| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- import time
- import logging
- from datetime import datetime
- from collections import defaultdict
- from pylab import plt, date2num, title, axvline
- from matplotlib import dates
- import numpy as np
- from scipy.misc import pilutil
- from PIL import ImageDraw, Image, ImageFilter
- from intersect import Mesh2D
- from utils.objparser import Mesh
- from utils import pos2rgb
- from utils.tiles import createLog2Tiles
- log = logging.getLogger('lws')
- ## the plot functions are not threadsafe
- ## the locking has to be done at the call site
- def plotOptimizeRun(lines, destfile, xaxis='date', highlightmins=True):
- xaxis = ''
- currmin = 10**9
- freeparams = defaultdict(list)
-
- orgidx = []
- avgdeltas = []
- dts = []
- simsperhour = defaultdict(int)
- mins_idx = []
- for j, l in enumerate(lines):
- if j % 500 == 0:
- log.debug('processing line %s of %s' % (j, len(lines)))
-
- for i, e in enumerate(l.split()):
- if i == 0:
- dt = datetime.strptime(e, '%Y-%m-%dT%H:%M:%S')
-
- simsperhour[dt.day * 24 + dt.hour] += 1 # will break at months end
-
- dts.append(dt)
-
- elif e.startswith('gen:'):
- pass
- elif e.startswith('org:'):
- #~ orgidx.append(int(e[4:]))
- pass
- elif e.startswith('avg-delta:'):
- v = float(e[10:])
- avgdeltas.append(v)
- if v < currmin:
- if xaxis == 'date':
- mins_idx.append(dt)
- else:
- mins_idx.append(j)
- currmin = v
- else:
- name, values = e.split(':')
- if ',' in values:
- freeparams[name].append([float(v) for v in values.split(',')])
- else:
- freeparams[name].append(float(values))
- if xaxis == 'date':
- xs = date2num(dts)
- mins_idx = date2num(mins_idx)
- else:
- xs = range(len(lines))
-
- min_x, max_x = min(xs), max(xs)
-
- # HACK: FILTER DA-PARAMS
- freeparams = {k:v for k, v in freeparams.items() if not k.startswith('da/')}
-
- numcols = 3
- fig = plt.figure(figsize=(18, len(freeparams) * 3.0 / numcols)) # 20x15 inches
-
- numrows = (len(freeparams) + 2) / numcols + 1
-
- if len(xs) < 1000:
- POINT_SIZE = 5
- elif len(xs) < 10000:
- POINT_SIZE = 3
- else:
- POINT_SIZE = 2
-
- ax = fig.add_subplot(numrows, numcols, 1)
- if highlightmins:
- plotfunc = lambda ax: ax.scatter
- kwargs = dict(s=POINT_SIZE, alpha=0.8, linewidth=0)
- else:
- plotfunc = lambda ax: ax.plot
- kwargs = dict()
-
- ax.grid()
- plotfunc(ax)(xs, avgdeltas, color='blue', **kwargs)
- ax.set_xlim(min_x, max_x)
-
- if xaxis == 'date':
- ax.xaxis_date()
-
- ax.xaxis.set_major_formatter(dates.DateFormatter('%H:%M'))
- for xtl in ax.get_xticklabels():
- xtl.set_fontsize(8)
-
- title('average delta' )
- if highlightmins:
- for m in mins_idx:
- axvline(m, color='black', linewidth=0.5)
-
- ax = fig.add_subplot(numrows, numcols, 2)
- xs_h, ys = zip(*list(sorted(simsperhour.items())))
- ax.grid()
- m = min(xs_h)
- ax.bar([x - m for x in xs_h], ys)
- title('sims per hour (all aps)')
-
- for i, (name, values) in enumerate(sorted(freeparams.items()), 1):
-
- ax = fig.add_subplot(numrows, numcols, 2 + i)
-
- ax.grid()
- ax.set_xlim(min_x, max_x)
-
- if name.startswith('da/'):
- plotfunc(ax)(xs, values, **kwargs)
-
- if name.startswith('n/'):
- plotfunc(ax)(xs, values, **kwargs)
-
- elif isinstance(values[0], float): # it's a power value
- ax.set_yscale('log')
- plotfunc(ax)(xs, values, **kwargs)
- ax.set_ylim(min(values)*0.5, max(values)*2)
- else:
- reflect, alpha = zip(*values)
- plotfunc(ax)(xs, reflect, color='blue', **kwargs)
- plotfunc(ax)(xs, alpha, color='green', **kwargs)
- ax.set_ylim(0, 1)
-
- if xaxis == 'date':
- ax.xaxis_date()
- ax.xaxis.set_major_formatter(dates.DateFormatter('%H:%M'))
- for xtl in ax.get_xticklabels():
- xtl.set_fontsize(8)
-
- title(name, y=0.95, fontsize=10, backgroundcolor='#EFEFEF')
- if highlightmins:
- for m in mins_idx:
- axvline(m, color='black', linewidth=0.5, alpha=0.6)
-
- fig.subplots_adjust(bottom=0.05, left=0.03, right=0.99, top=0.98)
- fig.savefig(destfile, format='png', dpi=90)
-
- plt.close(fig)
- def plotSimulatorStats(lines, destfile):
- LAST_HOURS = 12
-
- fig = plt.figure(figsize=(18, 12))
-
- xs = []
- waiting = []
- running = []
- finished = []
- last_waiting = 0
-
- generations = defaultdict(int)
- simulations = defaultdict(int)
-
- for l in lines:
- data = l.split()
- ts = float(data[1])
- if time.time() - ts > LAST_HOURS * 3600:
- continue
-
- dt = datetime.fromtimestamp(ts)
- curr_hour = dt.replace(minute=0, second=0, microsecond=0)
-
- xs.append(dt)
- w = int(data[3])
- waiting.append(w)
-
- if w > last_waiting:
- generations[curr_hour] += 1
- last_waiting = w
-
- simulations[curr_hour] += 1
-
- running.append(int(data[5]))
- finished.append(int(data[7]))
-
- xs = date2num(xs)
-
- for i, (datadict, name) in enumerate(((generations, 'generations/hour'), (simulations, 'simulations/hour')), 1):
- ax = fig.add_subplot(5, 1, i)
- ax.xaxis_date()
- _xs = date2num(datadict.keys())
- ax.set_xlim(min(_xs), max(_xs)+1/24.0)
- ax.bar(_xs, datadict.values(), [1/24.0]*len(_xs))
- title(name, y=0.95, fontsize=10, backgroundcolor='#EFEFEF')
-
-
- for i, (name, ys) in enumerate([('waiting', waiting), ('running', running), ('finished', finished)], 3):
- ax = fig.add_subplot(5, 1, i)
- ax.set_xlim(min(xs), max(xs))
- ax.plot(xs, ys)
- ax.xaxis_date()
-
- title(name, y=0.95, fontsize=10, backgroundcolor='#EFEFEF')
-
- fig.subplots_adjust(bottom=0.05, left=0.03, right=0.99, top=0.98)
- fig.savefig(destfile, format='png', dpi=90)
- plt.close(fig)
- def plot2DMapAPData(lws, activeSceneCfg, env, apid):
- x1, x2, y1, y2, z1, z2 = activeSceneCfg['bbox']
- pixel_per_meter = activeSceneCfg['2dpixelpermeter']
-
- width = int((x2 - x1) * pixel_per_meter) * 8
- height = int((y2 - y1) * pixel_per_meter) * 8
-
- cube_size = int(0.2 * pixel_per_meter * 8) # in mapspace
-
- img = Image.new('RGBA', (width, height), color=(0, 0, 0, 0))
- draw = ImageDraw.Draw(img)
- x_size, y_size, _ = env.aps[apid].dbdata.shape
-
- apcfg = lws.config['aps'][apid]
- _, _, z = env.translateToVoxel(apcfg['x'], apcfg['y'], apcfg['z'])
- max_rssi = env.aps[apid].dbdata[:,:, z].max()
- cut_off = -90
-
- _, y_m, _ = env.translateToMeter(0, y_size, 0)
- _, y_map_max, _ = lws.intoMapSpace(0, y_m, 0)
-
- for x in range(x_size):
- for y in range(y_size):
- rssi = env.aps[apid].dbdata[x, y, z]
- if rssi < cut_off:
- continue
-
- x_m, y_m, z_m = env.translateToMeter(x, y, z)
- x_map, y_map, _ = lws.intoMapSpace(x_m, y_m, z_m)
- rgb = pos2rgb(-rssi+max_rssi*1.1, -cut_off + max_rssi, spread=0.7, saturation=0.7)
- draw.rectangle([x_map, y_map_max-y_map, x_map+cube_size, y_map_max-y_map+cube_size], fill=rgb)
-
- destfile = lws.config['tmp'].joinpath('apdatatiles_%s.png' % apid)
- img.save(destfile)
- destdir = lws.config['tmp'].joinpath('apdatatiles_%s' % apid)
- createLog2Tiles(destfile, destdir, logger=log, rgba=True)
-
- def plot2DMap(activeSceneCfg, level, locations, aps, destfile, refresh=False, customdraw=None, resizeFactor=1):
- z_cut = activeSceneCfg['levels2d'][level] - 0.50
- objfile = activeSceneCfg['objfile']
- x1, x2, y1, y2, _, _ = activeSceneCfg['bbox']
-
- mesh = Mesh()
- mesh.parseObjFile(objfile)
- mesh_xlim = (int(x1), int(x2))
- mesh_ylim = (int(y1), int(y2))
- pixel_per_meter = activeSceneCfg['2dpixelpermeter']
- m2d = Mesh2D(mesh, mesh_xlim, mesh_ylim, pixel_per_meter)
-
- log.info('building %s...' % level)
- if destfile.exists() and destfile.mtime > objfile.mtime and not refresh:
- if customdraw is not None:
- img = Image.open(destfile)
- img = img.convert('RGBA')
- draw = ImageDraw.Draw(img)
- customdraw(img, draw, m2d, z_cut, aps, locations)
-
- return
-
- to_be_combined = []
- for objname in m2d.objnames:
- log.debug('object: %s' % objname)
- img = m2d.cut(objname, z_cut)
- to_be_combined.append(pilutil.fromimage(img))
- all_objects = np.add.reduce(np.array(to_be_combined))
- #~ combined_object_image
- log.info('save file to %s' % destfile.abspath())
-
- img = pilutil.toimage(all_objects)
-
- img = img.convert('RGBA')
- draw = ImageDraw.Draw(img)
-
-
- for apid, apcfg in aps.items():
- if abs(apcfg['z'] - z_cut) < 2:
- _x, _y = m2d.meter2pixel(apcfg['x'], apcfg['y'])
- draw.text((_x - 20, _y), apid, fill='#11CC11')
- draw.point((_x, _y), fill='#00FF00')
-
- for locid, loc in locations.items():
- if -1.0 < (loc.z - z_cut) < 2.0:
- _x, _y = m2d.meter2pixel(loc.x, loc.y)
- draw.text((_x, _y), str(locid), fill='#CC1111')
- draw.point((_x, _y), fill='#00FF00')
-
- draw.text((10, 10), 'scene: %s level: %s' % (activeSceneCfg.name, level), fill='#FFFFFF')
- if resizeFactor != 1:
- log.info('resizing...')
- img = img.resize((int(img.size[0]*resizeFactor), int(img.size[1]*resizeFactor)), Image.ANTIALIAS)
-
-
- img.save(destfile)
-
- if customdraw is not None:
- img = Image.open(destfile)
- draw = ImageDraw.Draw(img)
- customdraw(img, draw, m2d, z_cut, aps, locations)
-
- def plotHistogram(destfile, data=None, format=None, title='', **kwargs):
- assert data is not None
- assert format in ('materials', )
-
- fig = plt.figure(figsize=(15, 6))
- ax = fig.add_subplot(1, 1, 1)
- #~ fig.subplots_adjust(bottom=0.2, left=0.03, right=0.99, top=0.98)
-
- if format == 'materials':
- dd = data.split('|')
- values2 = []
- if ',' in dd[0]:
- values1 = [round(float(e.split(',')[0]), 2) for e in dd]
- ax.set_xlim((0, 1))
- ax.hist(values1, color="blue", alpha=0.5)
- values2 = [round(float(e.split(',')[1]), 2) for e in dd]
- ax.hist(values2, color="green", alpha=0.5)
- title = title + '\n' + ','.join('%.2f' % e for e in sorted(values1)) + '\n' + ','.join('%.2f' % e for e in sorted(values2))
- else:
- values1 = [float(e.split(',')[0]) for e in dd]
- title = title + '\n' + ','.join('%.1e' % e for e in sorted(values1))
- ax.hist(values1)
- #~ else:
- #~ ax.set_xlim((0, 1))
-
- ax.set_title(title, fontsize=8)
-
- fig.savefig(destfile, format='png', dpi=90)
- plt.close(fig)
|